
nnlojet-combine documentation

Alexander Huss

19th January 2018

Contents

1 Introduction 2

2 Prerequisites & Setup 2

3 Quick Start 2

4 More Details 5
4.1 Comments . 5
4.2 Sub-directories . 5
4.3 Alias . 5
4.4 Steering File . 5
4.5 Multi-threading . 6
4.6 Auto-generate skeleton for the steering file . 6
4.7 Plots . 6

5 Merging 6
5.1 Weighted Combination . 7
5.2 Combine Slices . 7
5.3 Do Both . 8
5.4 Simple Sum . 8

6 Optional settings 8
6.1 Combine settings . 8
6.2 Recursive search . 10
6.3 Plot . 10
6.4 Output weight table . 10
6.5 Restrict merge to certain columns . 10
6.6 Rebin histograms . 11
6.7 More features . 11

1

1 Introduction

This document is intended to describe the new combine script to merge multiple runs and
different parts of the calculation into a final result.

2 Prerequisites & Setup

The combine script is written entirely in python and requires:

• python3

• numpy (python module)1

Auto-generated plotscripts (*.plt) need gluplot version ≥ 5.
All relevant files are in /path/to/nnlojet/driver/bin and the executable files should not

be copied elsewhere to perform the combine2. Instead, add the bin directory to your PATH

variable:

1 export PATH=/path/to/nnlojet/driver/bin:$PATH

to make the combine script available globally. It is recommended to make this setting
permanent by adding the above line to your bashrc file (~/.bashrc).

If everything is set up properly, running nnlojet-combine.py -h in the terminal should give
you a help screen like this:

1 $ nnlojet -combine.py -h

2 usage: nnlojet -combine.py [-h] [-C CONFIG] [-j [JOBS]] [--APPLfast APPLFAST]

3

4 Merge histogram files

5

6 optional arguments:

7 -h, --help show this help message and exit

8 -C CONFIG , --config CONFIG

9 configuration file for the combine

10 -j [JOBS], --jobs [JOBS]

11 Specifies the number of jobs to run simultaneously.

12 --APPLfast APPLFAST Read in an APPLfast weight table and combine.

3 Quick Start

The nnlojet-combine.py script must not be edited and instead all settings will be provided
in a separate steering file which is read in by the script. A minimal steering file is given
in /path/to/nnlojet/driver/bin/combine.ini and this is the file that should be copied into the
folder where you want to do the combination. For the purpose of this quick-start tutorial
we assume a folder structure as shown in Fig. 1.

The combine.ini steering file contains the information for the script to find the relevant
datasets and how to assemble them into the final result:

1Install using “pip install numpy” or “pip3 install numpy” if not available on your system.
2 Any settings that are “local” to your combination are instead stored in a steering file (default: combine.

ini) which will be read in by the combine script.

2

1 [Paths]

2 raw_dir = raw

3 out_dir = combined

4

5 [Observables]

6 ALL

7

8 [Parts]

9 LO

10 V

11 R

12 VV

13 RV

14 RR

15

16 [Final]

17 LO = LO

18 NLO = LO + V + R

19 NNLO = LO + V + R + VV + RV + RR

20 NLO_only = V + R

21 NNLO_only = VV + RV + RR

The steering file is divided into different sections:

[Paths] In this block we specify two paths (absolute or relative to the location where the
combine script is executed): The location of the raw data files (raw_dir) and the output
directory (out_dir).

[Observables] Specifying “ALL” here will make the script scan the histogram file names
for observables automatically. Alternatively, one can give a list of observables (one on
each line) which should be considered. This is useful if only a subset is of interest and
then we can save time in the merge.

[Parts] Here, we specify the folders within the raw_dir directory, which correspond to the
different parts of the calculation. Each of these folders will then be scanned for *.dat

files and combined. To scan the directory recursively for histogram files, see Sect. 6.2.

[Final] File names for the final histogram files and how the different parts are assembled
into them is defined here. So far,

only
“+” sup-
ported,
maybe
“−” use-
ful too?

So far,
only
“+” sup-
ported,
maybe
“−” use-
ful too?

Names appearing on the r.h.s. must be items defined in the
“[Parts]” section (or in the “[Merge]” section, see Sect. 5).

Running “nnlojet-combine.py” will then create the output directory (“combined” here) with
further sub-directories as shown in Fig. 1:

./combined/Parts A merge is performed for the different parts separately using all the the
runs found in the corresponding folder. The output of this is stored in the “Parts”
sub-folder.

./combined/Final The sum of the different parts, as defined in the “[Final]” section of
the steering file, is performed using the histograms generated in the “Parts” sub-folder.
The resulting histograms are stored in the “Final” sub-folder.

3

before combine

combine.ini

raw

LO

{process}.{jobname}.{obs}.s1.dat

{process}.{jobname}.{obs}.s2.dat

...

{process}.{jobname}.{obs}.s42.dat

V

R

VV

RV

RR

after combine

combine.ini

combined

Parts

LO.{obs}.dat

V.{obs}.dat

R.{obs}.dat

VV.{obs}.dat

RV.{obs}.dat

RR.{obs}.dat

Final

LO.{obs}.dat

NLO.{obs}.dat

NNLO.{obs}.dat

NLO only.{obs}.dat

NNLO only.{obs}.dat

raw

Figure 1: Example folder structure before (left) and after (right) running the combination.

4

4 More Details

4.1 Comments

Comments in the steering file start with #. With an Observables block like this:

1 [Observables]

2 # cross

3 xm12_y1

4 # xm12_y2

only a merge for the observable xm12_y1 is performed. Similarly, one can comment out lines
in the “[Parts]” block if the raw data has not changed and one can skip the merging step
of the corresponding part.

4.2 Sub-directories

Elements in the “[Parts]” block are in fact paths (relative to raw_dir) and we can therefore
also write something like this

1 [Parts]

2 H1 -LQall -8.V/ptavg_12_q2_5p5_8

3 H1 -LQall -8.R/ptavg_12_q2_5p5_8

In this case, the corresponding merged files written into combined/Parts will re-create the
same directory structure.

4.3 Alias

The use of sub-directories, as described in the previous subsection, might not be something
we actually want. It certainly makes the declaration of the “[Final]” block more ugly with
path names on the r.h.s. However, everyone has a different way of organising their runs into
folders and we prefer to have maximal flexibility on the combine side than forcing the user
to move raw datasets into new folder structures. For this, we can assign an alias for the
folder given in the “[Parts]” block and use the alias in the “[Final]” part like this:

using paths directly:

1 [Parts]

2 H1 -LQall -8.V/ptavg_12_q2_5p5_8

3 H1 -LQall -8.R/ptavg_12_q2_5p5_8

4

5 [Final]

6 NLO_only = H1-LQall -8.V/

ptavg_12_q2_5p5_8 + H1-LQall

-8.R/ptavg_12_q2_5p5_8

using aliases:

1 [Parts]

2 H1-LQall -8.V/ptavg_12_q2_5p5_8 : V

3 H1-LQall -8.R/ptavg_12_q2_5p5_8 : R

4

5 [Final]

6 NLO_only = V + R

The histogram files generated in the ./combined/Parts folder will also use the alias name
as the file prefix.

4.4 Steering File

By default, the script will look for a file combine.ini as the steering file. Using the flag
“-C” we can manually provide the name of the steering file:

5

1 nnlojet -combine.py -C another_combine.ini

This can become useful if there are multiple combines to be performed on the datasets
contained in the same raw-data directory (different PDFs, low-Q2 & high-Q2 in DIS, . . .).

4.5 Multi-threading

Add the option -j {num_workers} or --jobs {num_workers} to the execution of the script to
spawn {num_workers} processes to perform the combine in parallel. Dropping the number
of workers as an argument will automatically determine the number of (physical) cores on
your machine and spawn that many worker processes.

4.6 Auto-generate skeleton for the steering file

todo: auto-generate a skeleton by scanning a raw folder. Something along the line of
nnlojet-combine.py --raw_dir {raw_dir} -o combine.ini

4.7 Plots

todo: auto-generate plots like in my old toolchain: differential breakdown into the
parts, differential breakdown of absolute errors, compatibility of merged files, etc. These
are essential plots to assess the consistency of the final results and to determine Parts
that are require more statistics...

5 Merging

Often times, multiple data sets are produced for the same Part using different run conditions.
Typical examples are:

(A) data sets using different settings

• variation of y0cut for checks

• different reweighting functions to have dedicated datasets that are more precise
in certain kinematic regions

• . . .

(B) division of a distribution into distinct / overlapping slices

• pT distribution divided into individual runs for: [2,7], [5,15], [10,100] GeV

• . . .

Merging such datasets is a very common task and therefore it makes sense to directly provide
this within the combine script. This is specified in an optional section “[Merge]” of the
steering file.

6

5.1 Weighted Combination

For case (A), we consider the situation of different y0cut values:

1 [Parts]

2 V

3 R/y0cut_1d -6 : R6

4 R/y0cut_1d -7 : R7

5 R/y0cut_1d -8 : R8

6

7 [Merge]

8 R_mrg = R6 & R7 & R8

9

10 [Final]

11 NLO_only = V + R_mrg

Here, R6, R7, and R8 are first combined separately. The operator “&” used in the “[Merge]”
section then specifies that a weighted average should be performed using these datasets and
saved as R_mrg. We can then use this alias in the “[Final]” section to assemble our final
result.

plot gen-
eration
still to
do

plot gen-
eration
still to
do

The script will further use the specification “R_mrg = R6 & R7 & R8” of the steering file to
auto-generate debug plots. These plots can be used to check for the compatibility of the
components that are merged together. In the example above, if the dataset R/y0cut_1d-6

turns out to be inconsistent with the rest due to a too large y0cut value, one can then drop
it from the merge: R_mrg = R7 & R8 and re-run the combine script.

5.2 Combine Slices

For case (B), we would like to stitch together datasets that correspond to different patches
of a distribution. It’s typically a good idea to do these runs in such a way that there are
overlapping bins between the datasets to check for consistency. We use the example of the
pT distribution divided into runs for: [2,7], [5,15], [10,100] GeV

1 [Parts]

2 V

3 R/pt_2_7 : R_2_7

4 R/pt_5_15 : R_5_15

5 R/pt_10_100 : R_10_100

6

7 [Merge]

8 R_mrg = R_2_7 | R_5_15 | R_10_100

9

10 [Final]

11 NLO_only = V + R_mrg

Here, R_2_7, R_5_15, and R_10_100 are first combined separately. The operator “|” used in
the “[Merge]” section then specifies that we wish to stitch these partial results together
into a final R_mrg result. For the overlapping regions, the dataset that comes “later” (is to
the right) has precedence. The order in which we specify the merge is therefore important
and for the example above we have:

2 – 5 GeV: dataset “R_2_7”

5 – 10 GeV: dataset “R_5_15”

7

10 – 100 GeV: dataset “R_10_100”

ATTENTION: If the cuts in the runs are not aligned to bin edges in the histogram it
can happen that the first/last bin in the dataset is not correct. TODO: For this, we im-
plement a post-processing feature that allows the user to make the script strip away the
first and/or last bin of a dataset.

todo: auto-generation of debug plots.

5.3 Do Both

It is not possible to specify a single line in the “[Merge]” section that uses both the operator
“&” and “|”. There are cases where such a thing is needed though and there are two ways
of doing it:

1 [Parts]

2 R/y0cut_1d -6 _pt_2_7 : R6_2_7

3 R/y0cut_1d -7 _pt_2_7 : R7_2_7

4 R/y0cut_1d -6 _pt_5_15 : R6_5_15

5 R/y0cut_1d -7 _pt_5_15 : R7_5_15

6

7 [Merge]

8 R6_mrg = R6_2_7 | R6_5_15

9 R7_mrg = R7_2_7 | R7_5_15

10 R_mrg = R6_mrg & R7_mrg

1 [Parts]

2 R/y0cut_1d -6 _pt_2_7 : R6_2_7

3 R/y0cut_1d -7 _pt_2_7 : R7_2_7

4 R/y0cut_1d -6 _pt_5_15 : R6_5_15

5 R/y0cut_1d -7 _pt_5_15 : R7_5_15

6

7 [Merge]

8 R_2_7_mrg = R6_2_7 & R7_2_7

9 R_5_15_mrg = R6_5_15 & R7_5_15

10 R_mrg = R_2_7 | R_5_15

5.4 Simple Sum

There are cases where a sum of Parts becomes necessary in the pre-processing step, which
can be done in the “[Merge]” section like this:

1 [Parts]

2 V_sub

3 V_p2b

4 R_sub

5 R_p2b

6

7 [Merge]

8 SUB_NLO_only = V_sub + R_sub ! NLO using antenna subtraction

9 P2B_NLO_only = V_p2b + R_p2b ! NLO using projection -to-Born

10 NLO_only = SUB_NLO_only & P2B_NLO_only ! "best" NLO prediction

6 Optional settings

In addition to the compulsory sections in the steering file described in Sect. 3, we can further
control the behaviour of the combine script by an optional section “[Options]”.

6.1 Combine settings

Although the default settings of the combine script should be “good” (more on the conser-
vative side), there will be cases where the user will want to adjust parameters to control

8

the merging prescription. This is useful to see if the default settings are too aggressive
for the given dataset or if one might be able to squeeze out more from the raw the data.
The merging proceeds in three steps, which are applied for each histogram separately on a
bin-by-bin basis:

1. ‘trim’: We apply an outlier-rejection procedure based on the inter-quartile-range (ro-
bust statistics) to discard data-points which are identified as outliers.

2. ‘k-scan’: on the trimmed dataset, we successively merge individual jobs (unweighted)
into pseudo-datasets until we observe a plateau.

3. ‘weighted‘: The pseudo-runs are then merged using a weighted average.

All internal parameters can be controlled through declarations in the “[Options]” block:

trim = (threshold, max_frac)

– threshold: Threshold above which data points are trimmed away. Larger values
means less trimming (default = 4).

– max_frac: Dynamically increase threshold until the ratio of trimmed data is
below this value (default = 0.1, can also be ‘None’).

k-scan = (maxdev_unwgt, nsteps, maxdev_steps)

– maxdev_unwgt: If this variable is not ‘None’ we first produce a reference result
using an unweighted average and perform a successive k-merging until the result
of the k-merging lies within maxdev_unwgt×σunwgt of the unweighted reference
(default = None).

– nsteps, maxdev_steps: In the k-merging, we successively combine pairs of
pseudo-runs. This means that at each step the number of pseudo-runs decreases
by a factor of 1

2 at each step. If nsteps, maxdev_steps are not None, we keep
track of the previous nsteps results and check for their consistency and therefore
look for a plateau. More precisely, we check that the previous nsteps results
are within maxdev_steps×σcurrent of the current result of the k-merging. We
therefore need at least nsteps+1 steps to be able to check for this termination
condition (default = 2,0.5).

weighted = <bool> After we have combined individual runs into pseudo-runs, such
that we actually trust the error estimates, we perform a weighted average over them.
This can be turned off by setting this flag to “False” (default = True). Clearly, the
whole k-merging is completely pointless if we combine things in an unweighted manner
in the end. If this flag is set to False one should also switch off the k-merging by
setting the respective values to None in order to save computing time.

Let me stress one more time that this procedure is applied on each single bin of every
histogram separately. Depending on the kinematic region, certain bins can be more prone
to outliers and also receive more/less statistics and the optimal value for k can differ between
bins.

9

6.2 Recursive search

If we want to search the paths given in the “[Parts]” section recursively for *.dat files, we
can set the flag as follows:

1 [Options]

2 recursive = True

By default, recursive search is turned off for performance reasons.

6.3 Plot

If we want to auto-generate some debug gnuplot scripts, we can turn this feature on by
adding the corresponding option:

1 [Options]

2 plot = True

The gnuplot scripts (*.plt files) are generated inside the “Plot” folder inside out_dir.

6.4 Output weight table

In order to fully mimic our combine procedure on the APPLfast side, we require the output
of a weight table containing bin-by-bin factors for each raw run. We can switch on this
output with an optional flag like this:

1 [Options]

2 weights = True

By default, the output of weight tables is off for performance reasons.
The script will produce two types of files containing the weight information:

*.npz: This file is generated for every entry in the “[Parts]”, “[Merge]”, and “[Final]”
section. It contains the full weight information (including all columns/channels) in a
binary file as generated through numpy.savez.

*.APPLfast.txt: This file outputs the weight table for the APPLfast merging and for the
final results defined in the “[Final]” section. Each line in this text file starts with
the raw-data file name followed by a white-space-separated list of weight factors to be
applied on the corresponding x-bin. Note that the weight factor is derived from the
first data column in the histograms, i.e. for the total cross section at the central scale.
Using this set of weight factors for the other scales reproduces the “real” final result
to single-precision accuracy (∼ 6 digits).

You can read in an *.APPLfast.txt file and perform a combination using the weights
stored in there by running nnlojet-combine.py --APPLfast {filename}.APPLfast.txt. The result-
ing histogram output will be displayed into the standard output and can be easily redirected
to a file if necessary.

6.5 Restrict merge to certain columns

To further speed up the combine, we might want to only merge certain columns of the data
files. An example is when we’re not interested in the full channel breakdown. In this case
we can gain an order-of-magnitude speedup by only picking the “tot”-type columns:

10

1 [Options]

2 columns = [’tot_scale01 ’, ’tot_scale02 ’, ’tot_scale03 ’, ’tot_scale04 ’, ’

tot_scale05 ’, ’tot_scale06 ’, ’tot_scale07 ’]

Only the column name associated with the values are specified but not the associated *_Err

column names. The errors will be automatically read in as the adjacent column in the data
file.

6.6 Rebin histograms

A rebinning of histograms is useful if we want to improve the statistics in some distributions
by combining the bins. For this, we can register a “new” observable

1 [Observables]

2 observable ! with the original binning

3 observable > observable_rebin : [x0 , x1 , x2 , ... xN]

which uses the data-file for “observable” and performs a re-binning according to the array
specified on the right. A new name is given to the re-binned observable using the operator
“>” in order to avoid overwriting the files of the original observable. The re-binning is
performed at the level of individual raw data files.

better to do this on the final merged files?!

6.7 More features

todo: ...

11

	Introduction
	Prerequisites & Setup
	Quick Start
	More Details
	Comments
	Sub-directories
	Alias
	Steering File
	Multi-threading
	Auto-generate skeleton for the steering file
	Plots

	Merging
	Weighted Combination
	Combine Slices
	Do Both
	Simple Sum

	Optional settings
	Combine settings
	Recursive search
	Plot
	Output weight table
	Restrict merge to certain columns
	Rebin histograms
	More features

