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Abstract: Standard methods to compute cross sections in hadron-induced collisions at

higher orders in perturbative QCD are time-consuming. We present a method which allows

very fast computations of cross sections which can be used in fits of parton density functions

and/or the strong coupling constant. A full implementation of the method is made for

the computation of jet cross sections at next-to-leading order in Deep-Inelastic Scattering

and in Hadron Collisions for Tevatron and LHC energies. Computer code is provided to

compute NLO predictions for jets in DIS at HERA, for jets in Run I and Run II at the

Tevatron and at the LHC.
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1. Introduction

Theoretical predictions for observables in hadron-induced processes are usually depending

on the parton density functions of the hadron(s) involved.... For many observables the

calculation of the cross sections requires a Monte Carlo integration over the phase space.

The computation of predictions beyond the lowest order is often very time-consuming.

In many practical cases, a repeated calculation of the same observable is needed, e.g. to

compute the PDF, or alphas dependence, or to use the observable in an iterative fitting

procedure to determine the PDFs.

Currently k-factor method is used: Determine k-factor (the ratio of the NLO over

LO result) for one PDF – during fit: compute only LO predictions, multiplied by k-

factor. Problem: k-factor also depends on the PDFs (although only weakly: different x

coverage, different decomposition of partonic subprocesses); plus: even the LO calculation

is relatively time consuming. (cite Tung - priv comm.: Tevtron Jets and Drell-Yan data

are currently the most time-consuming observables in the CTEQ PDF fits.

Here: method for computations within a second!

2. Parton Density Functions

2.1 Linear Combinations of PDFs

The parton density functions (PDFs) of a hadron are defined in a given factorization

scheme. Usually the MS-scheme is used or, sometimes, the DIS-scheme. In this factoriza-

tion scheme they depend on two variables: the hadron momentum fraction x, carried by

the parton and the factorization scale µf at which initial-state singularities are factorized.

In general one has to consider thirteen different PDFs (the gluon density, six quark and

six anti-quark densities). For processes with two initial state hadrons this corresponds to

169 different combinations. In most applications the number of independent PDFs can,

however, be reduced. All jet cross sections discussed in this note can be expressed using

four linear combinations of PDFs: G,Q, Q̄, C plus two 2-parton correlation functions S,A

which are defined as

G(x, µf ) = g(x, µf ) , (2.1)

Q(x, µf ) =
∑

i

qi(x, µf ) , (2.2)

Q̄(x, µf ) =
∑

i

q̄i(x, µf ) , (2.3)

C(x, µf ) =
∑

i

e2
i (qi(x, µf ) + q̄i(x, µf )) , (2.4)

S(x1, x2, µf ) =
∑

i

(qi(x1, µf ) qi(x2, µf ) + q̄i(x1, µf ) q̄i(x2, µf )) , (2.5)

A(x1, x2, µf ) =
∑

i

(qi(x1, µf ) q̄i(x2, µf ) + q̄i(x1, µf ) qi(x2, µf )) . (2.6)
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The quark (anti-quark) density of flavor i is labeled qi(x) (q̄i(x)) and ei denotes the electrical

charge of the quarks of flavor i. The sums run over all quark flavors i considered in the

calculation (i = 1, ..., nf ). G(x) is the gluon density. For simplicity, the dependence of the

PDFs on the factorization scale µf is not noted in the following.

2.2 Approximations of PDFs

The procedure discussed later in this note requires to express a given PDF f(x) by a linear

combination of eigenfunctions E(i)(x). We introduce a set of discrete x-values labeled x(i)

(i = 0, 1, 2, · · · , n) with x(n) < x(n−1) < x(n−2) < · · · < x(0) = 1. Around each x(i) we

define an eigenfunction E(i)(x) such that E(i)(x(i)) = 1, E(i)(x(j)) = 0 for i 6= j and
∑

i E(i)(x) = 1 for all x. The PDF f(x) can now be approximated by a linear combination

of the eigenfunctions E(i)(x) where the coefficients are given by the PDF values f(x(i)) at

the discrete points x(i)

f(x) =
∑

i

f(x(i))E(i)(x) . (2.7)

With E(i,j)(x1, x2) ≡ E(i)(x1)E
(j)(x2) the product f(x1, x2) ≡ f1(x1) f2(x2) of two PDFs

can be written as

f(x1, x2) =
∑

i,j

f(x
(i)
1 , x

(j)
2 ) E(i,j)(x1, x2) . (2.8)

The precision of the approximation depends on the choice of the xi and the eigenfunctions

E(i)(x). This is discussed in the Appendix.

3. Hadron-Hadron Collisions

3.1 PDFs and Partonic Subprocesses

The scattering of two hadrons is described by seven different subprocesses (in all cases

i 6= j)

gg → jets ∝ H1(x1, x2)

qg → jets plus q̄g → jets ∝ H2(x1, x2)

gq → jets plus gq̄ → jets ∝ H3(x1, x2)

qiqj → jets plus q̄iq̄j → jets ∝ H4(x1, x2)

qiqi → jets plus q̄iq̄i → jets ∝ H5(x1, x2)

qiq̄i → jets plus q̄iqi → jets ∝ H6(x1, x2)

qiq̄j → jets plus q̄iqj → jets ∝ H7(x1, x2)

Their contributions are directly proportional to the functions Hk (k = 1, ..., 7) which are

defined as

H1(x1, x2) = G(x1)G(x2) , (3.1)

H2(x1, x2) =
(

Q(x1) + Q̄(x1)
)

G(x2) , (3.2)

H3(x1, x2) = G(x1)
(

Q(x2) + Q̄(x2)
)

, (3.3)

H4(x1, x2) = Q(x1)Q(x2) + Q̄(x1)Q̄(x2) − S(x1, x2) , (3.4)
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H5(x1, x2) = S(x1, x2) , (3.5)

H6(x1, x2) = A(x1, x2) , (3.6)

H7(x1, x2) = Q(x1)Q(x2) + Q̄(x1)Q̄(x2) − A(x1, x2) . (3.7)

These functions exhibit the symmetries Hn(x1, x2) = Hn(x2, x1) for n = 1, 4, 5, 6, 7 and

H2(x1, x2) = H3(x2, x1). Please note that in collisions of a hadron and an anti-hadron the

PDFs of the anti-hadron are expressed by the PDFs of the hadron, where the quarks and

the anti-quarks are swapped. As a consequence one needs to swap the functions H4 ↔ H7

and H5 ↔ H6 in the respective equations.

3.2 Jet Cross Sections in Hadron-Hadron Collisions

The jet cross section in hadron-hadron collisions is given as a perturbative expansion in

αs. The contribution from each order n is a convolution of the perturbative coefficients

and the parton density functions of the hadrons, summed over the seven subprocesses and

multiplied with αn
s

σhh =
∑

n

αn
s (µr)

7
∑

k=1

ck,n(µr, µf ) ⊗ Hk(x1, x2, µf ) . (3.8)

Using eq. (2.8) we can replace the functions Hk by linear combinations of eigenfunctions

F (i,j) and obtain

σhh =
∑

n

αn
s (µr)

7
∑

k=1

ck,n(µr, µf ) ⊗





∑

i,j

Hk(x
(i)
1 , x

(j)
2 )F (i,j)(x1, x2)



 . (3.9)

or

σhh =
∑

n

αn
s (µr)

7
∑

k=1

∑

i,j

Hk(x
(i)
1 , x

(j)
2 )

(

ck,n(µr, µf ) ⊗ F (i,j)(x1, x2)
)

. (3.10)

We define

σ̃
(i,j)
k,n ≡ ck,n(µr, µf ) ⊗ F (i,j)(x1, x2) . (3.11)

Please note that while this convolution is independent of the PDFs and αs, the σ̃
(i,j)
k,n contain

all information on the observable (the perturbative coefficients, the jet definition, and the

phase space restrictions). The cross section can now be written as a simple product

σhh =
∑

i,j,k,n

αn
s (µr) Hk(x

(i)
1 , x

(j)
2 ) σ̃

(i,j)
k,n . (3.12)

While the time consuming computation of the σ̃
(i,j)
k,n needs to be done only once, the cross

section can quickly be reevaluated for different PDFs and αs values, as e.g. required in the

determination of PDF uncertainties or in global fits of PDFs.
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4. Lepton-Hadron Scattering

4.1 PDFs and Partonic Subprocesses

In Lepton-Hadron Scattering there are two interaction modes for the photon: the “direct”

process in which the photon interacts as a point-like object with a parton from the hadron

and the “resolved” process in which the photon interacts via it’s hadronic structure. The

latter becomes relevant at lower photon virtualities (Q2 . 10GeV2) and, of course, in

photoproduction where the photon is real. In the resolved process the photon is described

by it’s parton density functions and the description is analog to hadron-hadron scattering,

as described before. The only difference in collisions of a resolved photon with a hadrons

is that one has to deal with different PDFs on both sides. Therefore one can not apply

the same symmetries as in in the collisions of two identical hadrons (or hadron and anti-

hadron). The direct process is described by three partonic subprocesses

γ G → jets ∝ D1(x) ,

γ C → jets ∝ D2(x) ,

γ
(

Q + Q̄
)

→ jets ∝ D3(x) .

The contributions of the different subprocesses are directly proportional to the functions

Dk (k = 1, 2, 3) which are defined as

D1(x) = G(x) , (4.1)

D2(x) = C(x) , (4.2)

D3(x) = Q(x) + Q̄(x) . (4.3)

4.2 Jet Cross Sections in Deep-Inelastic Lepton-Hadron Scattering

The jet cross section is given as a perturbative expansion in αs. The contribution from each

order n is a convolution of the perturbative coefficients and the parton density functions

of the hadron, multiplied with αn
s

σDIS =
∑

n

αn
s (µr)

3
∑

k=1

ck,n(µr, µf ) ⊗ Dk(x, µf ) . (4.4)

This describes only the contribution from direct photon exchange. The contribution from

resolved photons is very similar to the hadron-hadron case, except that different PDFs are

used for the photon and the hadron. (... can easily be extended – not described here ...)

In eq. (2.7) ...

A. Eigenfunctions for the PDFs

using triangular eigenfunctions — the x(i) are chosen such that the values g(x(i) are equidis-

tant. Possible choices g(x) = log10(1/x) (for not too large x), or g(x) =
√

log10(1/x) (which

expands the x range at large x drastically)).

The choice of triangular eigenfunctions corresponds to a linear approximation of the

PDFs between adjacent x(i). Such a locally linear approximation can be significantly
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Figure 1: The three different pdfs (gluon, quarks and anti-quarks), taken from the CTEQ6.1M

parameterization and normalized by the function x1.5(1 − 0.99x)−3 (top). The bottom plots show

the precision of the linear approximation between adjacent bins (as described in the text).

improved by reweighting the PDFs with a function which makes them much more flat.

We found empirically that this can be done at all factoriation scales studied (from .. to ..

GeV). by reweighting with w(x) = x−1.5(1− 0.99x)3. This function is therefore multiplied

into the eigenfunctions (and later the PDFs are divided by w(x)).

In Fig. 1 we display the quality of the approximation ...

B. Examples for
√

s = 1.96 TeV and 14TeV

C. The Implementation

... of the inclusive jet cross section ...

C.1 The x Bins

The accessible x range for any observable extends from x = 1 down to a minimum value

xmin which is specific for each observable. To reduce the number of eigenfunctions needed

to cover the accessible x range it is important to make a good (but safe!) estimate of the

smallest accessible x-value in each bin of the observable. (see later).
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C.2 Structure of the Tables

The output tables are designed such that all information can be extracted automatically

(binning of the observable, x-binning, ....). The table consist of five parts: A header which

is universal for all obervables, a list of numbers, describing technical details how the table

is organized, a list of all bin boundaries (observable specific), a list of the lower limits

for the x-ranges, and the list of all coefficients, convoluted with the eigenfunctions. The

following example is for the inclusive jet cross section with a binning in pT and rapidity. A

restriction of the format is that it can only deal with a continuos binning in rapidity and

in pT .

******************************************************************************

******* fastNLO - Result Table

******************************************************************************

ireaction ! int: reaction 1 ep, 2 pp, 3ppbar

Ecms ! dbl: center-of-mass energy in GeV

iproc ! int: process type 1 incl jets, 2 dijets, ...

ialgo ! int: jet algo 1 kT, 2 midpoint cone, 3 rsep cone, 4 search cone

JetResol1 ! dbl: jet resolution paramter (kT distance D / R_cone)

JetResol2 ! dbl: 2nd parameter for jet algo (e.g. Rsep, search cone)

Oalphas ! dbl: order in alpha_s (??absolute - or 1: LO, 2: NLO??)

1234567890 ! --- End-of-block --- now come some technical details

nevt ! int: No of events used to create the table

nxbin ! int: No of eigenfunctions that cover the x-ranges

ixscheme ! int: No of scheme for EF x-binning 1 log 1/x 2 sqrt(log 1/x)

ipdfwgt ! int: No of scheme for PDF weighting 0 no weigthing

1234567890 ! --- End-of-block --- now come the pT,y bin boundaries

Nrapidity ! int: No of rapidity intervals

Rap0 ! dbl: lower boundary of 1st rapidity bin

... !

Rap[Nrapidity] ! dbl: upper boundary of last rapidity bin

Npt1 ! int: No of pT bins in first rapidity interval

... !

Npt[Nrapidity] ! int: No of pT bins in last rapidity interval

Pt-1-0 ! dbl: lower boundary of 1st pT bin in 1st rapidity bin

... !

Pt-1-[Npt1] ! dbl: upper boundary of last pT bin in 1st rapidity bin

... !

... !

Pt-[Nrapidity]-0 ! dbl: lower boundary of 1st pT bin in last rapidity bin

... !

Pt-[Nrapidity]-[Npt?] ! dbl: upper boundary of last pT bin in last rapidity bin

1234567890 ! --- End-of-block --- now come the x_min values for all bins

xmin-1-1 ! dbl: xmin in 1st rapidity bin / 1st pT bin

xmin-1-2 ! dbl: xmin in 1st rapidity bin / 2nd pT bin

... !

xmin-1-[Npt1] ! dbl: xmin in 1st rapidity bin / last pT bin

xmin-2-1 ! dbl: xmin in 2nd rapidity bin / 1st pT bin

... !

xmin-[Nrap]-[Npt?] ! dbl: xmin in last rapidity bin / last pT bin

1234567890 ! --- End-of-block --- now come the renorm. scales

murscale ! dbl: overall scale factor to adjust the renorm. scale
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murval-1-1 ! dbl: Array for all mu_r values - for all (y,pT) bins

... ! (same structure as xmin-Array)

murval-[Nrap]-[Npt?] ! dbl:

1234567890 ! --- End-of-block --- now come the factoriz. scales

mufscale ! dbl: overall scale factor to adjust the fact. scale

mufval-1-1 ! dbl: Array for all mu_f values - for all (y,pT) bins

... ! (same structure as mu_r and xmin Arrays)

mufval-[Nrap]-[Npt?] ! dbl:

1234567890 ! --- End-of-block --- now come the sigma_tilde

... ! dbl: each rapidity range

... ! each pT bin

... ! seven subprocesses:

... ! each (of five) subprocesses:

... ! half-grid with (n**2+n)/2 x-bins

... ! remaining two subprocesses:

... ! can be combined to one full n**2 grid

... ! (or better: two half grids)

1234567890 ! --- End of Table ------------------------------------
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C.3 Some Formulae ....

C.3.1 Lowest Accessible x Value

A trivial, but not very efficient, lower limit on the accessible x is given by

xtrivial
limit (pT min, |y|max) =

4p2
T min√

s
. (C.1)

where pT min and |y|max are the respective lower and upper limits for a given (pT , |y|) bin.

While this approximation is already very good at high pT and at large |y|, in the region of

low pT and low |y| it is too low by more than a factor of ten. For a better approximation

of the smallest accessible x we define the factor c as

c =

(

2 +
1

cosh(|y|max)

( √
s

2pT min
− 1

))

· 0.22 . (C.2)

A very efficient approximation of the lowest accessible x is then given by

xlimit(pT min, |ymax|) = xtrivial
limit (pT min, |y|max) · max (1.0, c) . (C.3)

For
√

s = 1960 GeV and pT min = 50 GeV the lowest value is xlimit = 0.0026.

C.3.2 Largest Accessible pT Value

In a given rapidity range with lower limit |y|min the largest kinematically accessible pT is

given by

pT,max(|y|min) =

√
s

1 + cosh(|y|min)
. (C.4)

In the central rapidity region this is an efficient estimate of the upper limit. However, in
the forward region (at |y| = 4.0) this kinematic limit is above the observed limit by a factor
of two.

for sqrt(s)=1960GeV:

y_min kinematic pT limit observed pT limit factor

0.0 980 980 1

0.4 940 890 1.06

0.8 830 720 1.15

1.2 690 540 1.28

1.6 540 380 1.42

2.0 410 260 1.57

2.4 290 180 1.61

2.8 210 120 1.75

3.2 140 80 1.75

3.6 100 60 1.67

C.3.3 Linear Binning of the pT and |y| Phase Space

The jet phase space in pT and |y| is divided into Nrap,max bins in rapidity |y|. Each |y| bin

with number Nrap(|y|) is divided into NpT ,max(Nrap(|y|)) bins. The pT bin within a given
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|y| bin Nrap = i is N
(i)
pT

. In the end we want to address each (|y|, pT ) on a linear scale. The

bin number Nbin, linear on the linear scale is given by

Nbin, linear =

Nrap−1
∑

i=1

N (i)
pT , max + N (i)

pT
. (C.5)

C.3.4 Format of the x1, x2 Tables

Of the seven subprocesses, 1, 4, 5, 6, 7 are symmetric in (x1, x2), so they can be stored

in terms od xmax and xmin. Subprocesses 2, 3 are not symmetric, but their coefficients

C2, C3 are related by C2(x1, x2) = C3(x2, x1). So we can redefine these subprocesses

into D2(xmax, xmin) and D3(xmin, xmax). If x1 ≥ x2 we set D2(x1, x2) = C2(x1, x2)

and D3(x1, x2) = C3(x1, x2). In the case x1 < x2 we set D2(x2, x1) = C3(x1, x2) and

D3(x2, x1) = C2(x1, x2) (later, when the tables are multiplied with the PDFs we have to

remember that in the re-defined third subprocess the indicees are swapped).

To store the coefficients we need (n2 + n)/2 elements for the table where n is the

number of bins to cover the x-range for each (|y|, pT )-bin. This is multiplied by seven

subprocesses (for n = 30 these are 3255 elements for each bin of the observable — ... and

n = 30 could be too small.... in my thesis I used 25 x bins per decade in log10(1/x), which

was very good approximation up to x = 0.5).

The total number of table elements is then

Ntot = Nbin, linear,max · 7 · n2 + n

2
. (C.6)

For the DØ Run I measurement of the inclusive jet cross section in 90 bins, this would

be 292,950 table elements. If we wanted to provide a fully flexible table for the Run II

measurements in |y| bins of 0.1 from 0 < |y| < 2.5 and pT bins of 10 GeV from 50 < pT <

700 GeV (varying with rapidity) this can easily be 3,255,000 elements.

C.3.5 The x-Binning

The coefficients are stored on a two-dimensional x grid at discrete values x(i). Between the

value x(i) and x(i−1) we are using a linear interpolation to approximate the PDFs. The

precision of the approximation will, of course, depend on the choice of the x(i). The binning

is done in equidistant intervals in the function f(x). For f(x) we propose two scenarios:

Either f1(x) = log10(1/x) or f2(x) =
√

log10(1/x). The former is a natural choice for most

observables which are only sensitive to smaller values of x. Above x = 0.5 the PDFs exhibit

a strong curvature and a linear approximation becomes worse. In these cases we propose

to use f2(x) which allows for a finer binning of the large-x range (the present figures in this

note are using f2(x)). One could also think of using different functions for the two different

x-values in an event. (looking at a few events, I would actually propose this for

the inclusive jet cross section – on the other hand this would not allow to use a

’half grid’ anymore. Question: is it worth to almost double the grid size to get

a better approximation? Probably “yes”. The alternative would be, to use the

poorer approximation and increase the number of x bins. But already a small
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increase of the bin number by a factor of 1.4 would also increase the grid by a

factor of two. Conclusion: either use f2 for both x values and use half grids –

or combine f1(xmin) and f2(xmax) and use a full grid. )

We assume that all PDFs go to zero for x = 1, so we don’t need to store the coefficients

at x(0). (please note that for this reason, the numbers for the coefficients in the C++ code

are reduced by one!)

For every jet four (x1, x2) bins receive contributions: (x
(i)
1 , x

(j)
2 ), (x

(i+1)
1 , x

(j)
2 ), (x

(i)
1 , x

(j+1)
2 ),

and (x
(i+1)
1 , x

(j+1)
2 ). We need to compute i, j, as well as the distances between x1 and x(i)

and x2 and x(j) to obtain the respective contributions for the four bins. The values i and

j are obtained as

i = Int

(

ntot ·
f(xmax)

f(xlimit)

)

and j = Int

(

ntot ·
f(xmin)

f(xlimit)

)

, (C.7)

with (0 ≤ i, j < ntot) where ntot is the total number of x bins used. Note that in the

C++ code we subtract 1 fom i, j The distances between adjacent bins are given by

∆ = f(xlimit)/ntot. So we compute

δ1 =
f(x(i)) − f(x1)

∆
and δ2 =

f(x(j)) − f(x2)

∆
(0 < δ1,2 ≤ 1) , (C.8)

where the value of f(x(i)) is given by i
ntot

f(xlimit). The four bins receive the following

values

(x
(i)
1 , x

(j)
2 ) : (1 − δ1) (1 − δ2) · C , (C.9)

(x
(i+1)
1 , x

(j)
2 ) : δ1 (1 − δ2) · C , (C.10)

(x
(i)
1 , x

(j+1)
2 ) : (1 − δ1) δ2 · C , (C.11)

(x
(i+1)
1 , x

(j+1)
2 ) : δ1 δ2 · C , (C.12)

where C is the perturbative coefficient for the specific subprocess. (To be checked by the

reader: prove that the sum of all four contributions is equal to one, i.e. that nothing is

getting lost).

D. PDF Correction Aposteriori

By assuming that the PDFs are locally linear in f(x) we introduce an error. By increasing

the number of bins ntot, this error can be made arbitrarily small. However, since the

tablesize is proportional to n2
tot there is a practical limit to this. One can also improve

the approximation later, by computing correction terms based on the comparison of the

PDFs inbetween the discrete values x(i) with the locally linear approximation. One could

e.g. integrate the difference between the approximation and the true PDF, weighted by one

minus the relative distance to the bin-center

c(i) =

∫ x(i+1)

x(i−1)

dx (PDF(x) − approximation(x)) ·
(

1 − |f(x) − f(x(i))|
∆

)

. (D.1)

This needs to be done in both dimensions (x1, x2). In principle one could also integrate in

two-dimensional (x1, x2) space but it is not too likely that the improvement would justfy

the effort (to be tested ....). (note: don’t integrate beyond last bin which is non-zero)
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E. CPU Usage

To test if the performance depends on the size (and maybe the organization) of the coef-
ficient array we study the CPU time to process 1M events for different numbers of x bins
(nxbin) for 275 analysis bins in (|y|, pT ) (five rapidity regions with 65, 60, 55, 50 and 45
pT bins). This test is done in LO:

Nevts time scenario (all jobs: LO)

1M 00:00:17 nxbins=2

1M 00:00:18 nxbins=30 (program size in memory: 15MB)

1M 00:00:19 nxbins=60 (program size in memory: 54MB)

1M 00:00:19 nxbins=100 (program size in memory: 149MB)

The CPU time does not depend on the size of the array, so further optimization is
not needed (at least as long as the the number of analysis and/or x bins is not increased
and the memory size of the computer is exceeded). For the given scenario we can easily
use 100 x bins and still obtain a reasonable program size. Please note that for the above
comparisons the internal αs and PDF calculations in NLOJET++ had been disabled. Now
we investigate the CPU resources used by the internal NLOJET++ histogram package and
by the internal αs and PDF calculations.

Nevts time scenario (all: LO jobs)

1M 00:00:20 as above: nxbins=30

1M 00:00:54 + enable alpha_s+PDF calculations (factor 2.7)

1M 00:01:47 + book and fill 2 histograms with total of 70 bins (f=5.3)

1M 00:04:22 + book and fill 10 histograms with total of 259 bins (f=13)

1M 00:22:20 + book and fill 40 histograms with total of 957 bins (f=67)

(times don’t change if histo-filling is disabled)

In LO there are huge improvements in the CPU time usage when using our method, as
compared to the default usage of NLOJET++. Now we compare the CPU usage in NLO
calculations:

Nevts time scenario (all: NLO jobs)

100k 00:00:24 nxbins=30

100k 00:00:58 + include NLOJET histos with 70 bins (f=2.4)

100k 00:01:39 + include NLOJET histos with 259 bins (f=4.1)

100k 00:03:29 + include NLOJET histos with 957 bins (f=8.7)

The results show that the computation of the NLO coefficients in NLOJET++ in-

creases the total CPU time by a factor of twelve. Due to the overall increase of CPU usage

the relative contribution from the internal histogramming becomes smaller. This reduces

the advantage of our method, although it is still significantky fast (between factors of four

and eight for a larger numbers of bins).
However, the overall efficiency can still be improved, by computing the cross sections

for multiple renormalization and factorization scales in a single job. The coefficient table
is therefore increased by a factor of five, to compute separately the up and down variations
for both scales in a single job, together with the default choice.

Nevts time scenario (all: NLO jobs)

100k 00:00:38 nxbins= 30 - 5 scales (memory: 68MB)

100k 00:00:38 nxbins= 60 - 5 scales (memory: 267M)

.... nxbins=100 - 5 scales -> swapping almost hangs the PC
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By computing all five scales in a single job, one gains a factor of 3.1, as compared

to running five independent jobs (and, of course, statistical fluctuations in the ratios are

reduced). However, one needs to be careful that one does not reach the memory limit of

the computer, at which memory swapping becomes an issue.
If we add more NLOJET++ histograms to compute five scale choices in the same job

we obtain the following CPU times

Nevts time scenario (all: NLO jobs)

100k 00:00:38 nxbins=30 - 5 scales (memory: 68MB)

100k 00:03:32 + include NLOJET histos with 5*70 bins (f=5.6)

100k 00:06:36 + include NLOJET histos with 5*259 bins (f=10)

100k 00:18:30 + include NLOJET histos with 5*957 bins (f=29)

It is visble that the jobs with the NLOJET++ histograms do not benefit significantly

from computing five scales in parallel, as compared to running individual jobs. The overall

improvement of our method is therefore becoming even better (between factors of five and

thirty in our examples).

F. Next Steps ...

Work on user Routine:

- define flexible pT Array (use in mu_r,mu_f, etc.)

- introduce switch to switch on/off 4 add. weight arrays for scale studies

- Can we put ‘‘initfunc’’ and ‘‘inputfunc’’ in separate file?

These two routines contain all the switches needed - would be nice if separated.

- Finalize Definition of Table (done - only need details on numbering of x-bins)

- test ‘‘swap’’ problem (comment weight filling - compare CPU time

- write full table from NLOJET++

Work on Fortran stand-alone code:

- write Fortran Code to add tables (or better C++ code which can read binary format?)

- write Fortan code to read table and output results in text file

as PAW vectors (including PAW code to define Histograms)

- default: read 6 tables: LO +NLO +4 scale variations

(scale variations can be switched off)

- include switch for PDF correction (on/off) (-> test)

When everything is set up - make test jobs:

*** (1) technical studies: is the implementation correct?

(relation i<->bin numbering, subprocesses 2,3, etc...)

101 - leave PDFs and alpha_s in NLOJET code included in weights:

102 - run job with many nxbins - four (y,pT) bins

(choose 2 low pT, 2 high pT; 2 central, 2 forward bins)

103 - run job with many nxbins, over large y,pT range (many bins)

compare direct output and sum of coefficients

(should be exactly identical - including stat. fluctuations)

do this for both LO (higher precision) and NLO (check fluctuations)
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-> plot ratios of histograms table/NLOJET

*** (2) check the quality of the PDF approximation

- remove the PDFs in NLOJET

(but keep alpha_s, to be sure we are using the same formula)

- check that we get the same result from the table as in NLOJET

201 - first use large nxbin & large y,pT phase space

do high precision LO jobs, so we can really judge the physics

plot ratios Table/NLOJET(with error)

202 - plot the x-distributions (can be done from the table!)

-> important to get a feeling for x1,x2 phase space

203 - reduce nxbin to see how the approximation gets worse

204 - try PDF correction to see if it works & improves things

205 - find optimum: (nxbin + PDF correction) -> be conservative!!

*** (3) do the real thing (for incl. jets)

301 - set up jobs for Run I (question: can we store the CDF jets

parallel to the D0 jets? -> overlapping bins - need to assign

two grid places for the same jet - but: very efficient!)

-> need to use Run I algo: ET scheme - ET,eta, Rsep

-> this will be used by CTEQ,MRST,Alehkin,H1,ZEUS,...

302 - jobs for the LHC (for workshop - find good binning!)

303 - jobs for Run II (start with current D0 binning)

-> in all cases: one LO job plus multiple NLO jobs for different scales

*** (4) think about different observables: dijet mass, Chi-Angle,

DeltaPhi, three-jet variables, ....

Decide: at which level publish paper??

Important:

Include also some “new” physics messages – especially for LHC!

Easy-to-do stuff: extensive (y, pT ) dependent k-factor and scale studies – search best

scale; x-sensitivity for different subprocesses: xmin, xmax plots – and for qg subprocesses:

xgluon, xquark – can all be very easily extracted from tables!
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