import sympy as sp
sp.init_printing()
np.sqrt(8)
sp.sqrt(8)
x, y, z, alpha, beta, gamma = sp.symbols('x y z alpha beta gamma')
x, y, z, alpha, beta, gamma
f, g = sp.Function('f'), sp.Function('g')
f(x)
expr = sp.cos(x) * sp.exp(-x**2)
expr
equation = sp.Eq(x**2 + 2*alpha*x, -alpha**2)
equation
sp.solve(equation, x)
sp.diff(expr)
sp.diff(f(x)*g(x))
differential_equation = sp.Eq(f(x).diff(x, x) + alpha * f(x).diff(x) + gamma * f(x), 0)
differential_equation
sp.dsolve(differential_equation)
sp.integrate(f(x))
sp.integrate(sp.sin(alpha * x + beta), x)
expr = sp.Limit(sp.sin(alpha * x)/x, x, 0)
expr
expr.doit()
sp.sin(x).series(x, 0, 10)
%matplotlib inline
sp.plotting.plot(sp.sin(x), (x, -2 * sp.pi, 2 * sp.pi))
<sympy.plotting.plot.Plot at 0x7ff5396846d8>
sp.plotting.plot_parametric(x*sp.sin(x)/sp.pi, -x*sp.cos(x)/sp.pi, (x, 0, 10 * sp.pi))
<sympy.plotting.plot.Plot at 0x7ff539739f28>
sp.plotting.plot3d(sp.sin(x)*sp.cos(y), (x, -sp.pi, sp.pi), (y, -sp.pi, sp.pi))
<sympy.plotting.plot.Plot at 0x7ff5396d7cc0>
sp.plotting.plot3d_parametric_line(sp.sin(x), sp.cos(x), x, (x, -2*sp.pi, 2*sp.pi))
<sympy.plotting.plot.Plot at 0x7ff53978cba8>