Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Z
ZfitWrapper
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Alexander Heidelbach
ZfitWrapper
Commits
c8538c28
Commit
c8538c28
authored
8 months ago
by
Alexander Heidelbach
Browse files
Options
Downloads
Patches
Plain Diff
Adjust to new error methods and some linting
parent
31e80cb8
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/zfitwrapper/BaseFitter.py
+23
-10
23 additions, 10 deletions
src/zfitwrapper/BaseFitter.py
with
23 additions
and
10 deletions
src/zfitwrapper/BaseFitter.py
+
23
−
10
View file @
c8538c28
...
...
@@ -61,14 +61,18 @@ class BaseFitter(ABC):
assert
self
.
model
.
model
is
not
None
counts_model
=
self
.
model
.
model
.
pdf
(
centers
)
counts_model_normed
=
counts_model
*
np
.
sum
(
counts
)
*
(
float
(
high
)
-
float
(
low
))
/
len
(
counts
)
counts_model_normed
=
(
counts_model
*
np
.
sum
(
counts
)
*
(
float
(
high
)
-
float
(
low
))
/
len
(
counts
)
)
nPars
=
0
for
parameter
in
self
.
model
.
parameters
.
values
():
if
parameter
.
floating
:
nPars
+=
1
gof
=
np
.
sum
((
counts
-
counts_model_normed
)
**
2
/
counts_model_normed
)
/
(
len
(
counts
)
-
nPars
)
gof
=
np
.
sum
((
counts
-
counts_model_normed
)
**
2
/
counts_model_normed
)
/
(
len
(
counts
)
-
nPars
)
return
gof
...
...
@@ -81,10 +85,12 @@ class BaseFitter(ABC):
name
=
fitparameter
.
latex_name
unit
=
fitparameter
.
unit
value
=
float
(
params
[
param
.
name
][
"
value
"
])
lower
=
float
(
params
[
param
.
name
][
"
minuit_mino
s
"
][
"
lower
"
])
upper
=
float
(
params
[
param
.
name
][
"
minuit_mino
s
"
][
"
upper
"
])
lower
=
float
(
params
[
param
.
name
][
"
error
s
"
][
"
lower
"
])
upper
=
float
(
params
[
param
.
name
][
"
error
s
"
][
"
upper
"
])
self
.
model
.
update_fitparameter
(
str
(
param
.
name
),
value
,
value
+
lower
,
value
+
upper
)
self
.
model
.
update_fitparameter
(
str
(
param
.
name
),
value
,
value
+
lower
,
value
+
upper
)
self
.
result_text
.
append
(
"
{name} = ${value:.3{c1}}^{{+{upper:.3{c2}}}}_{{{lower:.3{c3}}}}$ {unit}
"
.
format
(
...
...
@@ -107,7 +113,12 @@ class BaseFitter(ABC):
name
=
fitparameter
.
latex_name
,
value
=
fitparameter
.
value
,
unit
=
fitparameter
.
unit
,
c1
=
"
e
"
if
(
abs
(
fitparameter
.
value
)
>
1e3
or
abs
(
fitparameter
.
value
)
<
1e-3
)
else
"
f
"
,
c1
=
"
e
"
if
(
abs
(
fitparameter
.
value
)
>
1e3
or
abs
(
fitparameter
.
value
)
<
1e-3
)
else
"
f
"
,
)
)
...
...
@@ -128,18 +139,20 @@ class BaseFitter(ABC):
modelparameter
=
model
.
get_modelparameter
(
param
.
name
)
if
modelparameter
.
floating
and
param
.
shuffle
:
modelparameter
.
randomize
(
minval
=
param
.
lower
,
maxval
=
param
.
upper
,
sampler
=
np
.
random
.
uniform
)
modelparameter
.
randomize
(
minval
=
param
.
lower
,
maxval
=
param
.
upper
,
sampler
=
np
.
random
.
uniform
)
def
_single_fit
(
self
)
->
None
:
assert
isinstance
(
self
.
eval_model
,
zfit
.
core
.
interfaces
.
ZfitPDF
)
nll
=
self
.
lossfunction
(
model
=
self
.
eval_model
,
data
=
self
.
data
)
# minimize
minimizer
=
zfit
.
minimize
.
Minuit
(
use_minuit_
grad
=
True
)
result
=
minimizer
.
minimize
(
nll
)
minimizer
=
zfit
.
minimize
.
Minuit
(
grad
ient
=
True
)
result
=
minimizer
.
minimize
(
nll
)
.
update_params
()
# calculate errors
result
.
errors
(
method
=
"
minuit_minos
"
)
result
.
errors
()
result
.
hesse
()
self
.
zfitresult
=
result
# Information on all the parameters in the fit
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment