Skip to content
Snippets Groups Projects
Commit 87c13242 authored by Markus Prim's avatar Markus Prim
Browse files

preprocess measurements according to fit requirements

parent b6094658
Branches
No related tags found
No related merge requests found
......@@ -2,6 +2,10 @@ import numpy
import scipy.linalg
tauBzero = 1.520e-12 * 1. / 6.582119e-16 / 1e-9
tauBplus = 1.638e-12 * 1. / 6.582119e-16 / 1e-9
class BaBarBToRho:
"""
Reference:
......@@ -19,8 +23,8 @@ class BaBarBToRho:
babar_covariance = (babar_covariance + babar_covariance.T - numpy.diag(babar_covariance.diagonal())) * 1e-12
self.bins = babar_bins
self.central = babar_central
self.covariance = babar_covariance
self.central = babar_central / (tauBplus / 2)
self.covariance = babar_covariance / (tauBplus / 2) ** 2
class BelleBToRho:
......@@ -83,6 +87,12 @@ class BelleBToRho:
belle_charged_covariance_statistical = numpy.diag(belle_charged_error) @ belle_charged_correlation @ numpy.diag(
belle_charged_error)
belle_charged_central = belle_charged_central / (tauBplus / 2)
belle_neutral_central = belle_neutral_central / (tauBplus / 2)
belle_charged_covariance_statistical = belle_charged_covariance_statistical / (tauBplus / 2) ** 2
belle_neutral_covariance_statistical = belle_neutral_covariance_statistical / (tauBplus / 2) ** 2
belle_central = numpy.concatenate((belle_charged_central, belle_neutral_central))
belle_covariance_statistical = scipy.linalg.block_diag(belle_charged_covariance_statistical,
belle_neutral_covariance_statistical)
......@@ -160,9 +170,11 @@ class BaBarBToOmega:
babar_bins = [[0, 4], [4, 8], [8, 10], [10, 12], [12, 21]]
babar_central = numpy.array([0.214, 0.200, 0.147, 0.169, 0.482]) * 1e-4
babar_central = numpy.array([x / (b[1] - b[0]) for x, b in zip(babar_central, babar_bins)])
babar_central = babar_central / (tauBplus / 2)
babar_error = numpy.array([0.060, 0.037, 0.029, 0.031, 0.093]) * 1e-4
babar_error = numpy.array([x / (b[1] - b[0]) for x, b in zip(babar_error, babar_bins)])
babar_error = babar_error / (tauBplus / 2)
babar_correlation = numpy.array([
[1.000, 0.121, 0.061, 0.001, -0.011],
......@@ -237,9 +249,11 @@ class BelleBToOmega:
belle_bins = [[0, 7], [7, 14], [14, 21]]
belle_central = numpy.array([22.8, 56.5, 33.9]) * 1e-6
belle_central = numpy.array([x / (b[1] - b[0]) for x, b in zip(belle_central, belle_bins)])
belle_central = belle_central / (tauBplus / 2)
belle_error = numpy.array([6.2, 10.6, 11.5]) * 1e-6
belle_error = numpy.array([x / (b[1] - b[0]) for x, b in zip(belle_error, belle_bins)])
belle_error = belle_error / (tauBplus / 2)
belle_correlation = numpy.array([
[100, 1.5, 10.3],
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment