Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
eFFORT
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Felix Metzner
eFFORT
Commits
ed94c98b
Commit
ed94c98b
authored
5 years ago
by
Markus Prim
Browse files
Options
Downloads
Patches
Plain Diff
Delete file from repo
parent
0de49cc2
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
eFFORT/VxbOverTime.py
+0
-252
0 additions, 252 deletions
eFFORT/VxbOverTime.py
with
0 additions
and
252 deletions
eFFORT/VxbOverTime.py
deleted
100644 → 0
+
0
−
252
View file @
0de49cc2
import
matplotlib.pyplot
as
plt
import
numpy
import
uncertainties
from
uncertainties
import
ufloat
from
wg1template.histogram_plots
import
create_solo_figure
,
add_descriptions_to_plot
from
wg1template.plot_style
import
TangoColors
from
wg1template.plot_utilities
import
export
from
wg1template.point_plots
import
DataPoints
,
DataVariable
,
DataPointsPlot
"""
The values are taken from from the PDG reviews of the corresponding year.
"""
v_ub_incl
=
{
2002
:
ufloat
(
4.11
,
(
0.25
**
2
+
0.78
**
2
)
**
0.5
)
*
1e-3
,
2004
:
ufloat
(
4.68
,
0.85
)
*
1e-3
,
2006
:
ufloat
(
4.40
,
(
0.20
**
2
+
0.27
**
2
)
**
0.5
)
*
1e-3
,
2008
:
ufloat
(
4.12
,
0.43
)
*
1e-3
,
2010
:
ufloat
(
4.27
,
0.38
)
*
1e-3
,
2012
:
ufloat
(
4.41
,
(
0.15
**
2
+
0.15
**
2
+
0.16
**
2
)
**
0.5
)
*
1e-3
,
# Up/down error symmetrized
2014
:
ufloat
(
4.41
,
(
0.15
**
2
+
0.17
**
2
)
**
0.5
)
*
1e-3
,
# Up/down error symmetrized
2015
:
ufloat
(
4.49
,
(
0.16
**
2
+
0.17
**
2
)
**
0.5
)
*
1e-3
,
# Up/down error symmetrized
2016
:
ufloat
(
4.49
,
(
0.16
**
2
+
0.17
**
2
)
**
0.5
)
*
1e-3
,
# Up/down error symmetrized
2017
:
ufloat
(
4.49
,
(
0.15
**
2
+
0.165
**
2
+
0.17
**
2
)
**
0.5
)
*
1e-3
,
# Up/down error symmetrized
2018
:
ufloat
(
4.49
,
(
0.15
**
2
+
0.165
**
2
+
0.17
**
2
)
**
0.5
)
*
1e-3
,
# Up/down error symmetrized
2019
:
ufloat
(
4.49
,
(
0.15
**
2
+
0.165
**
2
+
0.17
**
2
)
**
0.5
)
*
1e-3
,
# Up/down error symmetrized
}
v_ub_excl
=
{
2002
:
ufloat
(
3.25
,
(
0.32
**
2
+
0.64
**
2
)
**
0.5
)
*
1e-3
,
2004
:
ufloat
(
3.326
,
0.59
)
*
1e-3
,
2006
:
ufloat
(
3.84
,
(
0.67
+
0.49
)
/
2
)
*
1e-3
,
# Up/down error symmetrized
2008
:
ufloat
(
3.5
,
(
0.6
+
0.5
)
/
2
)
*
1e-3
,
# Up/down error symmetrized
2010
:
ufloat
(
3.38
,
0.36
)
*
1e-3
,
2012
:
ufloat
(
3.23
,
0.31
)
*
1e-3
,
2014
:
ufloat
(
3.28
,
0.29
)
*
1e-3
,
2015
:
ufloat
(
3.72
,
0.19
)
*
1e-3
,
2016
:
ufloat
(
3.72
,
0.19
)
*
1e-3
,
2017
:
ufloat
(
3.70
,
(
0.10
**
2
+
0.12
**
2
)
**
0.5
)
*
1e-3
,
2018
:
ufloat
(
3.70
,
(
0.10
**
2
+
0.12
**
2
)
**
0.5
)
*
1e-3
,
2019
:
ufloat
(
3.70
,
(
0.10
**
2
+
0.12
**
2
)
**
0.5
)
*
1e-3
,
}
v_ub_avg
=
{
2002
:
ufloat
(
3.6
,
0.7
)
*
1e-3
,
2004
:
ufloat
(
3.67
,
0.47
)
*
1e-3
,
2006
:
ufloat
(
4.31
,
0.30
)
*
1e-3
,
2008
:
ufloat
(
3.95
,
0.35
)
*
1e-3
,
2010
:
ufloat
(
3.89
,
0.44
)
*
1e-3
,
2012
:
ufloat
(
4.15
,
0.49
)
*
1e-3
,
2014
:
ufloat
(
4.13
,
0.49
)
*
1e-3
,
2015
:
ufloat
(
4.09
,
0.39
)
*
1e-3
,
2016
:
ufloat
(
4.09
,
0.39
)
*
1e-3
,
2017
:
ufloat
(
3.94
,
0.36
)
*
1e-3
,
2018
:
ufloat
(
3.94
,
0.36
)
*
1e-3
,
2019
:
ufloat
(
3.94
,
0.36
)
*
1e-3
,
}
v_ub_munu
=
{
2019
:
ufloat
(
4.37
,
(
0.82
+
1.01
)
/
2
)
*
1e-3
}
v_ub_taunu
=
{
2015
:
ufloat
(
4.2
,
0.45
)
*
1e-3
}
v_cb_incl
=
{
2002
:
ufloat
(
40.4
,
(
0.5
**
2
+
0.5
**
2
+
0.8
**
2
)
**
0.5
)
*
1e-3
,
2004
:
ufloat
(
41.0
,
(
0.5
**
2
+
0.5
**
2
+
0.8
**
2
)
**
0.5
)
*
1e-3
,
2006
:
ufloat
(
41.7
,
0.7
)
*
1e-3
,
2008
:
ufloat
(
41.6
,
0.6
)
*
1e-3
,
2010
:
ufloat
(
41.5
,
0.7
)
*
1e-3
,
2012
:
ufloat
(
41.9
,
0.7
)
*
1e-3
,
2014
:
ufloat
(
42.2
,
0.7
)
*
1e-3
,
2015
:
ufloat
(
42.2
,
0.8
)
*
1e-3
,
2016
:
ufloat
(
42.2
,
0.8
)
*
1e-3
,
2017
:
ufloat
(
42.2
,
0.8
)
*
1e-3
,
2018
:
ufloat
(
42.2
,
0.8
)
*
1e-3
,
# 2019: ufloat(42.2, 0.8) * 1e-3,
}
v_cb_excl
=
{
2002
:
ufloat
(
42.1
,
(
1.1
**
2
+
1.9
**
2
)
**
0.5
)
*
1e-3
,
# B->D l nu: 2002: ufloat(41.3, (4.0 ** 2 + 2.9 ** 2) ** 0.5),
2004
:
ufloat
(
42.0
,
(
1.1
**
2
+
1.9
**
2
)
**
0.5
)
*
1e-3
,
2006
:
ufloat
(
40.9
,
1.8
)
*
1e-3
,
2008
:
ufloat
(
38.6
,
1.3
)
*
1e-3
,
2010
:
ufloat
(
38.7
,
1.1
)
*
1e-3
,
2012
:
ufloat
(
39.6
,
0.9
)
*
1e-3
,
2014
:
ufloat
(
39.5
,
0.8
)
*
1e-3
,
2015
:
ufloat
(
39.2
,
0.7
)
*
1e-3
,
2016
:
ufloat
(
39.2
,
0.7
)
*
1e-3
,
2017
:
ufloat
(
41.9
,
2.0
)
*
1e-3
,
2018
:
ufloat
(
41.9
,
2.0
)
*
1e-3
,
# 2019: ufloat(41.9, 2.0) * 1e-3,
}
v_cb_avg
=
{
2002
:
ufloat
(
41.2
,
2.0
)
*
1e-3
,
2004
:
ufloat
(
41.3
,
1.5
)
*
1e-3
,
2006
:
ufloat
(
41.6
,
0.6
)
*
1e-3
,
2008
:
ufloat
(
41.2
,
1.1
)
*
1e-3
,
2010
:
ufloat
(
40.6
,
1.3
)
*
1e-3
,
2012
:
ufloat
(
40.9
,
1.1
)
*
1e-3
,
2014
:
ufloat
(
41.1
,
1.3
)
*
1e-3
,
2015
:
ufloat
(
40.5
,
1.5
)
*
1e-3
,
2016
:
ufloat
(
40.5
,
1.5
)
*
1e-3
,
2017
:
ufloat
(
42.2
,
0.8
)
*
1e-3
,
2018
:
ufloat
(
42.2
,
0.8
)
*
1e-3
,
# 2019: ufloat(42.2, 0.8) * 1e-3,
}
v_xb_ratio
=
{
2015
:
ufloat
(
0.083
,
(
0.004
**
2
+
0.004
**
2
)
**
0.5
)
# Nature Physics 11, 743–747 (2015)
}
v_cb_phil
=
{
2019
:
ufloat
(
38.3
,
(
0.3
**
2
+
0.7
**
2
+
0.6
**
2
)
**
0.5
)
*
1e-3
# BGL 1809.03290v2.pdf
}
def
generate_plot_points
(
yearly_data
,
jitter
=
0.
):
return
DataPoints
(
x_values
=
numpy
.
array
([
x
-
2000
+
jitter
for
x
in
yearly_data
.
keys
()]),
y_values
=
numpy
.
array
([
uncertainties
.
nominal_value
(
x
)
*
1e3
for
x
in
yearly_data
.
values
()]),
x_errors
=
None
,
y_errors
=
numpy
.
array
([
uncertainties
.
std_dev
(
x
)
*
1e3
for
x
in
yearly_data
.
values
()])
)
if
__name__
==
'
__main__
'
:
V_ub_exclusive
=
generate_plot_points
(
v_ub_excl
,
0.1
)
V_ub_inclusive
=
generate_plot_points
(
v_ub_incl
,
-
0.1
)
V_ub_average
=
generate_plot_points
(
v_ub_avg
)
V_cb_exclusive
=
generate_plot_points
(
v_cb_excl
,
0.1
)
V_cb_inclusive
=
generate_plot_points
(
v_cb_incl
,
-
0.1
)
V_cb_average
=
generate_plot_points
(
v_cb_avg
)
V_ub_lhcb
=
DataPoints
(
x_values
=
2015
-
2000
,
y_values
=
uncertainties
.
nominal_value
(
v_xb_ratio
[
2015
]
*
v_cb_avg
[
2018
])
*
1e3
,
x_errors
=
None
,
y_errors
=
uncertainties
.
std_dev
(
v_xb_ratio
[
2015
]
*
v_cb_avg
[
2018
])
*
1e3
,
)
V_cb_lhcb
=
DataPoints
(
x_values
=
2015
-
2000
,
y_values
=
uncertainties
.
nominal_value
(
v_ub_avg
[
2018
]
/
v_xb_ratio
[
2015
])
*
1e3
,
x_errors
=
None
,
y_errors
=
uncertainties
.
std_dev
(
v_ub_avg
[
2018
]
/
v_xb_ratio
[
2015
])
*
1e3
,
)
V_cb_phil
=
generate_plot_points
(
v_cb_phil
)
V_ub_munu
=
generate_plot_points
(
v_ub_munu
)
V_ub_taunu
=
generate_plot_points
(
v_ub_taunu
)
form_factors
=
DataVariable
(
r
""
,
r
""
,
r
'
$|V_\mathrm{ub}| \times 10^3$
'
,
""
)
dp
=
DataPointsPlot
(
form_factors
)
dp
.
add_component
(
r
"
$V_\mathrm{ub}$ Exclusive
"
,
V_ub_exclusive
,
color
=
TangoColors
.
orange
,
marker
=
'
.
'
)
dp
.
add_component
(
r
"
$V_\mathrm{ub}$ Inclusive
"
,
V_ub_inclusive
,
color
=
TangoColors
.
sky_blue
,
marker
=
'
.
'
)
dp
.
add_component
(
r
"
$\Lambda_b \rightarrow p\mu\nu$ (1504.01568)
"
,
V_ub_lhcb
,
color
=
TangoColors
.
plum
,
marker
=
'
d
'
)
dp
.
add_component
(
r
"
$B\rightarrow \mu \nu$ Preliminary
"
,
V_ub_munu
,
color
=
TangoColors
.
scarlet_red
,
marker
=
'
d
'
)
dp
.
add_component
(
r
"
$B\rightarrow \tau \nu$
"
,
V_ub_taunu
,
color
=
TangoColors
.
chameleon
,
marker
=
'
d
'
)
fig
,
ax
=
create_solo_figure
(
figsize
=
(
5
,
3
),
dpi
=
100
)
ax
.
fill_between
([
-
1
,
V_ub_exclusive
.
x_values
[
-
1
]
+
3
],
V_ub_exclusive
.
y_values
[
-
1
]
+
V_ub_exclusive
.
y_errors
[
-
1
],
V_ub_exclusive
.
y_values
[
-
1
]
-
V_ub_exclusive
.
y_errors
[
-
1
],
color
=
TangoColors
.
orange
,
alpha
=
0.3
)
ax
.
fill_between
([
-
1
,
V_ub_inclusive
.
x_values
[
-
1
]
+
3
],
V_ub_inclusive
.
y_values
[
-
1
]
+
V_ub_inclusive
.
y_errors
[
-
1
],
V_ub_inclusive
.
y_values
[
-
1
]
-
V_ub_inclusive
.
y_errors
[
-
1
],
color
=
TangoColors
.
sky_blue
,
alpha
=
0.3
)
ax
.
axhline
((
0.00360
+
0.00017
)
*
1e3
,
color
=
TangoColors
.
slate
,
ls
=
'
--
'
,
lw
=
1
)
ax
.
axhline
((
0.00360
-
0.00011
)
*
1e3
,
color
=
TangoColors
.
slate
,
ls
=
'
--
'
,
lw
=
1
)
ax
.
fill_between
([
-
1
,
V_ub_inclusive
.
x_values
[
-
1
]
+
3
],
(
0.00360
+
0.00017
)
*
1e3
,
(
0.00360
-
0.00011
)
*
1e3
,
facecolor
=
"
none
"
,
hatch
=
"
///
"
,
edgecolor
=
TangoColors
.
slate
,
lw
=
0
,
label
=
'
CKM Unitarity
'
)
dp
.
plot_on
(
ax
,
draw_legend
=
True
,
legend_kwargs
=
{
'
ncol
'
:
2
,
},
legend_inside
=
True
)
add_descriptions_to_plot
(
ax
,
experiment
=
r
''
,
luminosity
=
r
''
,
additional_info
=
''
)
ax
.
set_ylim
(
2.5
,
7.1
)
ax
.
set_xlim
(
1
,
V_ub_exclusive
.
x_values
[
-
1
]
+
1
)
ax
.
set_xticks
(
V_ub_exclusive
.
x_values
)
ax
.
set_xticklabels
((
V_ub_exclusive
.
x_values
+
2000
).
astype
(
int
),
rotation
=-
45
)
plt
.
show
()
export
(
fig
,
'
vub-over-time
'
,
'
.
'
)
plt
.
close
()
form_factors
=
DataVariable
(
r
""
,
r
""
,
r
'
$|V_\mathrm{cb}| \times 10^3$
'
,
""
)
dp
=
DataPointsPlot
(
form_factors
)
dp
.
add_component
(
r
"
$V_\mathrm{cb}$ Exclusive
"
,
V_cb_exclusive
,
color
=
TangoColors
.
orange
,
marker
=
'
.
'
)
dp
.
add_component
(
r
"
$V_\mathrm{cb}$ Inclusive
"
,
V_cb_inclusive
,
color
=
TangoColors
.
sky_blue
,
marker
=
'
.
'
)
# dp.add_component(r"$\Lambda_b \rightarrow p\mu\nu$ (1504.01568)", V_cb_lhcb, color=TangoColors.plum, marker='d')
dp
.
add_component
(
r
"
$B\rightarrow D^*\ell\nu$ (1809.03290)
"
,
V_cb_phil
,
color
=
TangoColors
.
scarlet_red
,
marker
=
'
*
'
)
fig
,
ax
=
create_solo_figure
(
figsize
=
(
5
,
3
),
dpi
=
100
)
ax
.
fill_between
([
-
1
,
V_cb_exclusive
.
x_values
[
-
1
]
+
3
],
V_cb_exclusive
.
y_values
[
-
1
]
+
V_cb_exclusive
.
y_errors
[
-
1
],
V_cb_exclusive
.
y_values
[
-
1
]
-
V_cb_exclusive
.
y_errors
[
-
1
],
color
=
TangoColors
.
orange
,
alpha
=
0.3
)
ax
.
fill_between
([
-
1
,
V_cb_inclusive
.
x_values
[
-
1
]
+
3
],
V_cb_inclusive
.
y_values
[
-
1
]
+
V_cb_inclusive
.
y_errors
[
-
1
],
V_cb_inclusive
.
y_values
[
-
1
]
-
V_cb_inclusive
.
y_errors
[
-
1
],
color
=
TangoColors
.
sky_blue
,
alpha
=
0.3
)
ax
.
axhline
((
0.04250
+
0.00036
)
*
1e3
,
color
=
TangoColors
.
slate
,
ls
=
'
--
'
,
lw
=
1
)
ax
.
axhline
((
0.04250
-
0.00116
)
*
1e3
,
color
=
TangoColors
.
slate
,
ls
=
'
--
'
,
lw
=
1
)
ax
.
fill_between
([
-
1
,
V_ub_inclusive
.
x_values
[
-
1
]
+
3
],
(
0.04250
+
0.00036
)
*
1e3
,
(
0.04250
-
0.00116
)
*
1e3
,
facecolor
=
"
none
"
,
hatch
=
"
///
"
,
edgecolor
=
TangoColors
.
slate
,
lw
=
0
,
label
=
'
CKM Unitarity
'
)
dp
.
plot_on
(
ax
,
draw_legend
=
True
,
legend_kwargs
=
{
'
ncol
'
:
2
},
legend_inside
=
True
)
add_descriptions_to_plot
(
ax
,
experiment
=
r
''
,
luminosity
=
r
''
,
additional_info
=
''
)
ax
.
set_ylim
(
36
,
52
)
ax
.
set_xlim
(
1
,
V_cb_exclusive
.
x_values
[
-
1
]
+
2
)
ax
.
set_xticks
([
*
V_cb_exclusive
.
x_values
,
19
])
ax
.
set_xticklabels
(([
*
(
V_cb_exclusive
.
x_values
+
2000
).
astype
(
int
),
2019
]),
rotation
=-
45
)
plt
.
show
()
export
(
fig
,
'
vcb-over-time
'
,
'
.
'
)
plt
.
close
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment