Skip to content
Snippets Groups Projects
Commit 895e114e authored by Jan Kieseler's avatar Jan Kieseler
Browse files

might work

parent 89b93c0b
Branches
No related tags found
No related merge requests found
......@@ -46,7 +46,7 @@ if __name__ == "__main__":
#'thickness_absorber_6': .1,
#'thickness_absorber_7': .1,
#'thickness_absorber_8': .1,
'thickness_scintillator_0': 10.5,
'thickness_scintillator_0': 3.5,
#'thickness_scintillator_1': 0.5,
#'thickness_scintillator_2': 0.5,
#'thickness_scintillator_3': 0.5,
......@@ -190,25 +190,24 @@ if __name__ == "__main__":
surrogate_dataset = SurrogateDataset(ds, reco_result.detach().cpu().numpy())#important to detach here
print('surr pre-training 0')
surrogate_model.train_model(surrogate_dataset, batch_size=256, n_epochs= n_epochs_pre//2, lr=0.03)
surrogate_model.train_model(surrogate_dataset, batch_size=128, n_epochs= n_epochs_pre//2, lr=0.01)
print('surr pre-training 1')
surrogate_model.train_model(surrogate_dataset, batch_size=256, n_epochs= n_epochs_pre, lr=0.01)
surrogate_model.train_model(surrogate_dataset, batch_size=128, n_epochs= n_epochs_pre, lr=0.01)
print('surr pre-training 2')
surrogate_model.train_model(surrogate_dataset, batch_size=512, n_epochs= n_epochs_pre, lr=0.001)
surrogate_model.train_model(surrogate_dataset, batch_size=128, n_epochs= n_epochs_pre, lr=0.001)
print('surr pre-training 3')
surrogate_model.train_model(surrogate_dataset, batch_size=1024, n_epochs= n_epochs_pre, lr=0.001)
surrogate_model.train_model(surrogate_dataset, batch_size=512, n_epochs= n_epochs_pre, lr=0.001)
print('surr pre-training 4')
surrogate_model.train_model(surrogate_dataset, batch_size=1024, n_epochs= n_epochs_pre, lr=0.0003)
surrogate_model.train_model(surrogate_dataset, batch_size=2048, n_epochs= n_epochs_pre, lr=0.0003)
print('surr pre-training 5')
surrogate_model.train_model(surrogate_dataset, batch_size=1024, n_epochs= n_epochs_pre, lr=1e-4)
surrogate_model.train_model(surrogate_dataset, batch_size=2048, n_epochs= n_epochs_pre, lr=1e-4)
print('surr pre-training 6')
surrogate_model.train_model(surrogate_dataset, batch_size=1024, n_epochs= n_epochs_pre, lr=3e-5)
surrogate_model.train_model(surrogate_dataset, batch_size=2048, n_epochs= n_epochs_pre, lr=3e-5)
#these are un-normalised quantities
surr_out, reco_out, true_in = surrogate_model.apply_model_in_batches(surrogate_dataset, batch_size=1024)
surr_out, reco_out, true_in = surrogate_model.apply_model_in_batches(surrogate_dataset, batch_size=2048)
make_check_plot(surr_out, reco_out, true_in, evolution, outname = "pretrain")
pre_train()
exit() #DEBUG
#exit() #DEBUG
best_surrogate_loss = 1e10
def update_best_surrogate_loss(loss):
......
......@@ -311,11 +311,12 @@ class Surrogate(torch.nn.Module):
self.n_detector_parameters = n_detector_parameters
self.model = PiecewiseLinear(n_conditions = n_detector_parameters + n_true_plus_context_inputs, #true context is energy etc,
xmin = -10., xmax = 10., #here the reco stuff is normalised so that should (TM) work
xmin = -5., xmax = 5., #here the reco stuff is normalised so that should (TM) work
nb=265
)
self.optimizer = torch.optim.Adam(self.parameters(), lr=0.0001)
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.0001)
self.n_reco_parameters = n_out_parameters # called n_reco_parameters for consistency with the original code
self.device = torch.device('cuda')
self.n_time_steps = None #compatibility
......@@ -377,6 +378,8 @@ class Surrogate(torch.nn.Module):
)
#print(derivatives)
#print('reco',reco_step_inputs.mean(), reco_step_inputs.std())
loss = ( 0.5 * (model_out**2 + math.log(2*pi)) - derivatives.log() ).mean()
#print(loss)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment