Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
fastNLO
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Container registry
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
qcd-public
fastNLO
Commits
0c112c5a
Commit
0c112c5a
authored
4 years ago
by
Klaus Rabbertz
Browse files
Options
Downloads
Patches
Plain Diff
Remove intermediate version
parent
dd98507e
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
tools/plotting/fastnnlo_runtime_ah.py
+0
-277
0 additions, 277 deletions
tools/plotting/fastnnlo_runtime_ah.py
with
0 additions
and
277 deletions
tools/plotting/fastnnlo_runtime_ah.py
deleted
100755 → 0
+
0
−
277
View file @
dd98507e
#!/usr/bin/env python3
#-*- coding:utf-8 -*-
import
glob
import
argparse
import
glob
import
sys
import
matplotlib
as
mpl
import
matplotlib.gridspec
as
gridspec
import
matplotlib.lines
as
mlines
import
matplotlib.patches
as
mpatches
import
matplotlib.ticker
as
mticker
from
matplotlib.ticker
import
(
FormatStrFormatter
,
LogFormatter
,
NullFormatter
,
ScalarFormatter
,
AutoMinorLocator
,
MultipleLocator
)
from
matplotlib
import
cm
# We do not want any interactive plotting! Figures are saved to files instead.
# This also avoids the ANNOYANCE of frequently missing Tkinter/tkinter (python2/3) GUI backends!
# To produce scalable graphics for publication use eps, pdf, or svg as file format.
# For this to work we try the Cairo backend, which can do all of these plus the raster format png.
# If this is not usable, we fall back to the Agg backend capable only of png for nice web plots.
#ngbackends = mpl.rcsetup.non_interactive_bk
#print('[fastnnlo_pdfunc]: Non GUI backends are: ', ngbackends)
# 1st try cairo
backend
=
'
cairo
'
usecairo
=
True
try
:
import
cairocffi
as
cairo
except
ImportError
:
try
:
import
cairo
except
ImportError
:
usecairo
=
False
# print('[fastnnlo_pdfunc]: Can not use cairo backend :-(')
# print(' cairocffi or pycairo are required to be installed')
else
:
if
cairo
.
version_info
<
(
1
,
11
,
0
):
# Introduced create_for_data for Py3.
usecairo
=
False
# print('[fastnnlo_pdfunc]: Can not use cairo backend :-(')
# print(' cairo {} is installed; cairo>=1.11.0 is required'.format(cairo.version))
if
usecairo
:
mpl
.
use
(
'
cairo
'
)
else
:
backend
=
'
agg
'
useagg
=
True
try
:
mpl
.
use
(
backend
,
force
=
True
)
except
:
useagg
=
False
raise
ImportError
(
'
[PlotRuntime]: Neither cairo nor agg backend found :-( Cannot produce any plots. Good bye!
'
)
mpl
.
use
(
'
agg
'
)
import
matplotlib.pyplot
as
plt
# numpy
import
numpy
as
np
def
main
():
# Parse arguments
args
=
arguments
()
# extract correct paths for input and outputfiles
logfiles
=
get_files
(
args
[
'
logfiles
'
])
outputpath
=
args
[
'
output
'
]
all_plot
=
args
[
'
All
'
]
fmt
=
args
[
'
format
'
]
# get all the information from logfiles as dict
# dict contains: runtime, runtime_unit, channel, events
loginformation
=
get_loginformation
(
logfiles
)
# plot all the information
if
args
[
'
CPUtime
'
]:
plot_elapsed_time
(
loginformation
,
outputpath
,
all_plot
,
fmt
)
if
args
[
'
Events
'
]:
plot_events_per_hour
(
loginformation
,
outputpath
,
all_plot
,
fmt
)
if
not
args
[
'
CPUtime
'
]
and
not
args
[
'
Events
'
]:
plot_elapsed_time
(
loginformation
,
outputpath
,
all_plot
,
fmt
)
plot_events_per_hour
(
loginformation
,
outputpath
,
all_plot
,
fmt
)
exit
(
0
)
def
arguments
():
# Define arguments and options
parser
=
argparse
.
ArgumentParser
(
epilog
=
'
Skript to plot elapsed time of fastNLO channels
'
,
formatter_class
=
argparse
.
ArgumentDefaultsHelpFormatter
)
# positional argument
parser
.
add_argument
(
'
logfiles
'
,
nargs
=
'
+
'
,
type
=
str
,
help
=
'
Either input is a single string from LAW Task or it is a list
'
)
# optional arguments
parser
.
add_argument
(
'
-o
'
,
'
--output
'
,
nargs
=
1
,
type
=
str
,
default
=
'
./
'
,
help
=
'
Set here the outputpath
'
)
parser
.
add_argument
(
'
--CPUtime
'
,
dest
=
'
CPUtime
'
,
action
=
'
store_true
'
,
help
=
'
Plot only the elapsed time
'
)
parser
.
add_argument
(
'
--Events
'
,
dest
=
'
Events
'
,
action
=
'
store_true
'
,
help
=
'
Plot only the events per hour
'
)
parser
.
add_argument
(
'
--All
'
,
dest
=
'
All
'
,
action
=
'
store_true
'
,
help
=
'
Set plotoptions according to plot for all channels
'
)
parser
.
add_argument
(
'
--format
'
,
required
=
False
,
nargs
=
1
,
type
=
str
,
default
=
'
png
'
,
help
=
'
Comma-separated list of plot formats to use: eps, pdf, png, svg. If nothing is chosen, png is used.
'
)
return
vars
(
parser
.
parse_args
())
def
get_files
(
files
):
# check if logfiles argument is one filename glob or a list of files
if
len
(
files
)
==
1
:
files
=
glob
.
glob
(
files
[
0
])
if
len
(
files
)
==
1
:
print
(
'
fastnnlo_runtime: ERROR! Aborted, only one log file found: {}
'
.
format
(
files
[
0
]))
exit
(
3
)
return
files
def
get_loginformation
(
files
):
run_time
=
[]
number_events
=
[]
channel
=
None
for
file
in
files
:
event
=
False
run_time_temp
=
[]
with
open
(
file
)
as
origin
:
for
line
in
origin
:
# extract elapsed time with time unit
if
'
Time elapsed
'
in
line
:
line
=
line
.
split
(
'
:
'
)
hours
=
float
(
line
[
1
])
minutes
=
float
(
line
[
2
])
seconds
=
float
(
line
[
3
])
if
hours
==
True
:
run_time_temp
.
append
(
hours
+
minutes
/
60
+
seconds
/
360
)
unit
=
'
hours
'
else
:
run_time_temp
.
append
(
minutes
+
seconds
/
60
)
unit
=
'
minutes
'
# extract channel name
if
'
Tablename
'
in
line
and
not
channel
:
line
=
line
.
split
()
tablename
=
line
[
2
].
split
(
'
.
'
)
channel
=
tablename
[
0
]
+
'
.
'
+
tablename
[
1
]
# extract total events
if
'
ncalltot=
'
in
line
and
not
event
:
line
=
line
.
split
(
'
,
'
)
number_events
.
append
(
float
(
line
[
4
][
10
:]))
event
=
True
run_time
.
append
(
run_time_temp
[
-
1
])
run_time
=
np
.
array
(
run_time
)
number_events
=
np
.
array
(
number_events
)
information
=
{
'
runtime
'
:
run_time
,
'
runtime_unit
'
:
unit
,
'
channel
'
:
channel
,
'
events
'
:
number_events
}
return
information
def
plot_elapsed_time
(
informationdict
,
out_path
,
plot_all
=
False
,
format
=
'
png
'
):
time
=
informationdict
[
'
runtime
'
]
unit
=
informationdict
[
'
runtime_unit
'
]
channel
=
informationdict
[
'
channel
'
]
if
plot_all
:
channel
=
channel
.
split
(
'
.
'
)
channel
=
channel
[
0
]
# get relevant values
mean
=
np
.
mean
(
time
)
std
=
np
.
std
(
time
)
median
=
np
.
median
(
time
)
iqd
=
np
.
subtract
(
*
np
.
percentile
(
time
,
[
75
,
25
],
interpolation
=
'
linear
'
))
/
2.
CPUtime
=
np
.
sum
(
time
)
/
(
1
if
unit
==
'
hours
'
else
60
)
# set saving location
filename
=
out_path
[
0
]
+
(
''
if
out_path
[
0
][
-
1
]
==
'
/
'
else
'
/
'
)
filename
+=
channel
+
'
.Hist_Elapsed_time.
'
+
format
# set figure
fig
=
plt
.
figure
(
figsize
=
(
16
,
12
))
ax
=
fig
.
gca
()
# plot histogram
n
,
batches
,
_
=
ax
.
hist
(
time
,
bins
=
20
,
color
=
'
deepskyblue
'
,
edgecolor
=
'
black
'
,
label
=
'
Total CPU time: {0:0.0f} hours
'
.
format
(
CPUtime
))
if
not
plot_all
:
# plot mean and median
ax
.
vlines
(
mean
,
0
,
max
(
n
),
colors
=
'
red
'
,
linestyles
=
'
dashed
'
,
label
=
r
'
Mean: {0:0.1f}$\pm${2:0.1f} {1}
'
.
format
(
mean
,
unit
,
std
))
ax
.
vlines
(
median
,
0
,
max
(
n
),
colors
=
'
green
'
,
linestyles
=
'
dashed
'
,
label
=
r
'
Median: {0:0.1f}$\pm${2:0.1f} {1}
'
.
format
(
median
,
unit
,
iqd
))
# finish and save figure
ax
.
set_title
(
'
Elapsed time of
'
+
channel
+
'
production
'
,
fontsize
=
20
)
ax
.
set_xlabel
(
'
CPU time [
'
+
unit
+
'
]
'
,
horizontalalignment
=
'
right
'
,
x
=
1.0
,
verticalalignment
=
'
top
'
,
y
=
1.0
,
fontsize
=
20
,
labelpad
=
15
)
ax
.
set_ylabel
(
'
frequency
'
,
horizontalalignment
=
'
right
'
,
x
=
1.0
,
verticalalignment
=
'
top
'
,
y
=
1.0
,
fontsize
=
20
,
labelpad
=
15
)
ax
.
set_yscale
(
'
log
'
)
ax
.
tick_params
(
axis
=
'
both
'
,
which
=
'
major
'
,
labelsize
=
20
)
ax
.
legend
(
loc
=
'
best
'
,
fontsize
=
20
)
ax
.
grid
()
ax
.
set_axisbelow
(
True
)
fig
.
savefig
(
filename
)
def
plot_events_per_hour
(
informationdict
,
out_path
,
plot_all
=
False
,
format
=
'
png
'
):
time
=
informationdict
[
'
runtime
'
]
unit
=
informationdict
[
'
runtime_unit
'
]
channel
=
informationdict
[
'
channel
'
]
events
=
informationdict
[
'
events
'
]
if
unit
==
'
hours
'
:
eph
=
events
/
time
else
:
eph
=
events
/
(
time
/
60
)
if
plot_all
:
channel
=
channel
.
split
(
'
.
'
)
channel
=
channel
[
0
]
# get relevant values
mean
=
np
.
mean
(
eph
)
std
=
np
.
std
(
eph
)
median
=
np
.
median
(
eph
)
iqd
=
np
.
subtract
(
*
np
.
percentile
(
eph
,
[
75
,
25
],
interpolation
=
'
linear
'
))
/
2.
CPUtime
=
np
.
sum
(
time
)
/
(
1
if
unit
==
'
hours
'
else
60
)
# set saving location
filename
=
out_path
[
0
]
+
(
''
if
out_path
[
0
][
-
1
]
==
'
/
'
else
'
/
'
)
filename
+=
channel
+
'
.Hist_Events_per_hour.
'
+
format
# set figure
fig
=
plt
.
figure
(
figsize
=
(
16
,
12
))
ax
=
fig
.
gca
()
# plot histogram
n
,
batches
,
_
=
ax
.
hist
(
eph
,
bins
=
20
,
color
=
'
deepskyblue
'
,
edgecolor
=
'
black
'
,
label
=
'
Total CPU time: {0:0.0f} hours
'
.
format
(
CPUtime
))
if
not
plot_all
:
# scientific format
f
=
mticker
.
ScalarFormatter
(
useOffset
=
False
,
useMathText
=
True
)
g
=
lambda
x
,
pos
:
"
${}$
"
.
format
(
f
.
_formatSciNotation
(
'
%0.2e
'
%
x
))
sci
=
mticker
.
FuncFormatter
(
g
)
# plot mean and median
ax
.
vlines
(
mean
,
0
,
max
(
n
),
colors
=
'
red
'
,
linestyles
=
'
dashed
'
,
label
=
r
'
Mean: {0}$\pm${1} events/hour
'
.
format
(
sci
(
mean
),
sci
(
std
)))
ax
.
vlines
(
median
,
0
,
max
(
n
),
colors
=
'
green
'
,
linestyles
=
'
dashed
'
,
label
=
r
'
Median: {0}$\pm${1} events/hour
'
.
format
(
sci
(
median
),
sci
(
iqd
)))
# finish and save figure
ax
.
set_title
(
'
Events per hour of
'
+
channel
+
'
production
'
,
fontsize
=
20
)
ax
.
set_xlabel
(
'
events/hour
'
,
horizontalalignment
=
'
right
'
,
x
=
1.0
,
verticalalignment
=
'
top
'
,
y
=
1.0
,
fontsize
=
20
,
labelpad
=
15
)
ax
.
set_ylabel
(
'
frequency
'
,
horizontalalignment
=
'
right
'
,
x
=
1.0
,
verticalalignment
=
'
top
'
,
y
=
1.0
,
fontsize
=
20
,
labelpad
=
15
)
ax
.
set_yscale
(
'
log
'
)
ax
.
tick_params
(
axis
=
'
both
'
,
which
=
'
major
'
,
labelsize
=
20
)
ax
.
legend
(
loc
=
'
best
'
,
fontsize
=
20
)
ax
.
grid
()
ax
.
set_axisbelow
(
True
)
fig
.
savefig
(
filename
)
if
__name__
==
"
__main__
"
:
main
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment